If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 2450 + -140y + y2 = 0 Solving 2450 + -140y + y2 = 0 Solving for variable 'y'. Begin completing the square. Move the constant term to the right: Add '-2450' to each side of the equation. 2450 + -140y + -2450 + y2 = 0 + -2450 Reorder the terms: 2450 + -2450 + -140y + y2 = 0 + -2450 Combine like terms: 2450 + -2450 = 0 0 + -140y + y2 = 0 + -2450 -140y + y2 = 0 + -2450 Combine like terms: 0 + -2450 = -2450 -140y + y2 = -2450 The y term is -140y. Take half its coefficient (-70). Square it (4900) and add it to both sides. Add '4900' to each side of the equation. -140y + 4900 + y2 = -2450 + 4900 Reorder the terms: 4900 + -140y + y2 = -2450 + 4900 Combine like terms: -2450 + 4900 = 2450 4900 + -140y + y2 = 2450 Factor a perfect square on the left side: (y + -70)(y + -70) = 2450 Calculate the square root of the right side: 49.497474683 Break this problem into two subproblems by setting (y + -70) equal to 49.497474683 and -49.497474683.Subproblem 1
y + -70 = 49.497474683 Simplifying y + -70 = 49.497474683 Reorder the terms: -70 + y = 49.497474683 Solving -70 + y = 49.497474683 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '70' to each side of the equation. -70 + 70 + y = 49.497474683 + 70 Combine like terms: -70 + 70 = 0 0 + y = 49.497474683 + 70 y = 49.497474683 + 70 Combine like terms: 49.497474683 + 70 = 119.497474683 y = 119.497474683 Simplifying y = 119.497474683Subproblem 2
y + -70 = -49.497474683 Simplifying y + -70 = -49.497474683 Reorder the terms: -70 + y = -49.497474683 Solving -70 + y = -49.497474683 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '70' to each side of the equation. -70 + 70 + y = -49.497474683 + 70 Combine like terms: -70 + 70 = 0 0 + y = -49.497474683 + 70 y = -49.497474683 + 70 Combine like terms: -49.497474683 + 70 = 20.502525317 y = 20.502525317 Simplifying y = 20.502525317Solution
The solution to the problem is based on the solutions from the subproblems. y = {119.497474683, 20.502525317}
| 6(-6t+1)=18-3(10t-20) | | 4y-6=9y+19 | | 6(-6+1)=18-3(10t-20) | | 12s-18s=12 | | .25x+16=3(.25x+1.3) | | u/20=v | | 9321.91=2000(1+1x^20) | | -[8z-(14z+8)]=8+(5z+6) | | -10c+8(3c-6)=9c+2 | | 4x^2-8x=-6 | | 2.29+18.6g=19.2g+3.67 | | 2/7v=8 | | 36=3/4x | | -16.28-9.9h+6.99=9.96-8.8h | | -2(4x+-5)+3x=-6x+-11 | | rx+x=6 | | V-6=-8 | | 45=-v+182 | | 12x+6-5x+10=3 | | 3x-5x-1=90 | | 45-u=270 | | -4p-5(3-2p)=4(p-4)-13 | | 15-2x=-6x+3 | | 129=210-w | | -5.1q+11.73=-17.1q-7.47 | | -5.1q+11.3=-17.1q-7.47 | | 5+12X-2=8x+51-4x | | -5.1q+11.73=-17.1-7.47 | | P=x+(x+2)+(x+4) | | 3-x=-5x | | 7w+5=2(4w+3) | | 19.7k=19.8k+1.62 |